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1. INTRODUCTION

Many engineers have been focusing their attention in the past few
years on the problems encountered when a random force is applied to
structural materials. The advent of these problems was brought about
by the development of jet engines for aircraft and rocket engines for
spacecraft. It was found that the panels in the fuselage and wing
structures of aircraft in the vicinity of the jet engines fail due to
the random acoustical excitation they receive from the jet engine noise.
A similar situation exists in the neighborhood of the nozzles on rockets
engines. The basic reason this random excitation is so damaging is that
it excites materials at all frequencies over the frequency range
(bandwidth) of its power spectrum. If a natural frequency of| the
structure happens to exist in the bandwidth and the structure itself
dissipates little or no energy (light damping), the resulting amplitude
of vibration would become very large and failure should occur in a
reasonably short time.

This type of response occurs in lightly damped systems because the
system behaves as a narrow-band filter and absorbs energy primarily at
its own natural frequency; this absorption of energy is in phase with
the vibration of the system, causing the amplitude of vibration to in-
crease with each successive cycle of vibration. The amplitude of a
system with zero damping will tend to increase without bound; the am-
plitude of systems with damping will tend to increase until it reaches
the limiting amplitude defined by the parameters of the system, the
limiting amplitude being larger with the lesser amount of damping.

The stringer reinforced plate shown in Figure 1 is a configuration
commonly found in aircraft, spaceships, and many other structures. The
plate and each of the inner panel areas are square with the outer edges
of the plate assumed to be fixed. The stringer reinforcements are an
integral part of the plate, the panel areas being created by milling
the plate into its present configuration from one sheet of metal

(aluminum). The fixed edge condition was imposed by bolting an angle
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FIGURE 1: Geometric Representation of Test Plate
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iron frame to the outer four inches of the plate and connecting the top
and bottom frames with plates bolted into the frames. The latter
plates were used to support the system during testing.

The problem is: given this plate and this excitation (Figure 2),
predict the response of the plate. The problem is solved in two parts:
a mathematical model using a lumped parameter analysis; and an experi-
mental test on the particular plate shown in Figure 1.

It was decided that the form of the response should be the re-
sponse power spectral density and the maximum root mean square dis-
placements of the plate. The plate was excited by a large exponential
horn measuring twelve feet square at its mouth and producing a wave
front which was approximately plane with normal incidence to the plate
and perfectly correlated in the horizontal and vertical directions.

The random excitation was band limited from 25 to 500 Hz. This band-
width contains all the frequencies of interest for this particular prob-
lem and allows the attaining of a much higher root mean square power
level than that a;tained by a wider bandwidth. A root mean square
square power level of approximately 149 decibels referenced to .0002
bars was attained by the horn. Figure 2 shows the power spectral den-

sity of the acoustical force exciting the plate.



FIGURE 2.
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2. PREVIOUS WORK

The purpose of this section is to give credit to the authors whose
work was utilized as a guide in performing this investigation. The two
common methods of analysis in this type of investigation are the normal
mode lumped parameter analysis and the transfer matrix technique, pre-
viously known as the Holzer-Myklestad method. Although extensive lit-
erature related to this problem was surveyed, the scope of this section
is limited to the particular investigations which are similar to this
investigation. These particular investigations are also selected be-
cause of their practicality.

The normal mode approach in the study of the response of contin-
uous structures under random loading began with the work by Van Lear and
Uhlenbeck (1) in 1931. Recent authors using this approach includes
Miles in 1954 (14), Lyon in 1956 (2), Eringen in 1957 (3), Thompson and
Barton in 1957 (4), Powell in 1958 (5), Samuels in 1958 (6), Dyer in
1958, 1959 (7), (8), Bagdanoff and Goldberg in 1960 (9), Lin in 1963-
1965 (10), (11), (26), Barnoski in 1967 (12), and Seireg in 1969 (13).

The work of Miles (14), Powell (5), and Lin (10), (11), (26) is
the basis for the lumped parameter analysis performed by Barnoski (12)
and Seireg (13). The particular method developed by Seireg is most
like the analysis used in this investigation.

In the initial work in this area, Miles (14) assumed that the re-
sponse of a panel is dominated by one (fundamental) mode. Consequently,
he also assumed that the system can be represented by an oscillator with
a single degree of freedom., His assumption leads to a simple expression

for the output power spectrum of the panel response:

s @ = |8 |% e | @-1)

where QFF is the input power spectrum and H is the transfer func-
tion. Substituting this expression into the standard mean square value

equation,

3 |



%2 = f 3 (@) d (2-2)
. _

one obtains the mean square value of the response. Miles considered
only an excitation pressure which is uniformly distributed over the
panel in order that the assumption of fundamental-mode predominancy
would hold. If the pressure is not uniformly distributed, a more gen-
eral investigation is warranted. The work by Miles, later extended by
Powell (5), was eventually utilized to evaluate the response of air-
craft panels to jet—engine noise. In many respects this work is simi-
lar to the analysis used in this investigation.

Powell (5) extended Miles' work to consider several modes of vi-

bration and obtained a general expression for the output power spectrum:

2
5, @ =23 W] . 1,0 ap@a® I (2-3)
v r s .
where. Spp, = excitation power spectrum at a reference point

A = overall area of the structure

Jrs = joint acceptance of the pressure field
T

1 J ' o ’ ’
= —— . Ww- Ce s d g -

Jr&r NIRR Rop (51,1 :T) o (x) o (r ) drdr - (2-4)

where.,ar and o, = normal mode amplitudes
*'y

¢

r,r = coordinates of a point on the structure
']
drdr - = differential area
RFF = gutocorrelation function of the excitation pressure

T = difference in response lags for two modes, r and s
when excited at frequency @,

Lin (10) (11) (26) later simplified Powell's results for the case

of light damping and well separated resonant frequencies to

6!
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@xx(w) = E |Hr(w)‘2 @FF,O(w)A2 Jir(w) (2—5)‘

Lin (11) eventually derived what is considered the most general form of
the normal mode approach to determining the response of a linear conti-
nuous structure subjected to a random pressure. He also proved that
the general results (Equation 2-3) arrived at by Powell can be deduced
from a more general equation (2-6) by assuming the excitation pressure

field to be weakly statiomary.

\

‘. | ' |
8y (T12T250) = JA By (pyPp30) Hrpo0p50) HE(ry,p,50)dpyde, |
where rl,r2 = coordinates of the respomnse point
pl,p2 = coordinates of the excitation pressure

H* = complex conjugate of H

Barnoski (12) applied the results determined by Lin (11) with the
help of work by Crandall (28) and Roberts (29) to predict the mean
square displacements and velocity response of rectangular plates sub-
jected to a random excitation. Barnoski developed two dimensionless
coefficients, I and II, whose values, ranging from zero to one, are to
be multiplied respectively by the results of Lin for the root mean
square displacement and velocity. These coefficients are determined by
the particular damping ratio (Z) of the system and the ratio of the cut-
off frequency (upper bandwidth limit) (wc) of the input spectrum to the
natural frequency of the system (wn). For damping ratios (Z) less than
0.01, both the dimensionless coefficients I and II are nearly zero; for
wC/wn somewhat less than one. They rapidly approach unity as wc/wn ap-
proaches infinity. Barnoski's results converge to the results given by
Lin (11) for an excitation spectrum with a cut-off frequency which en-
compasses the natural frequencies of the system.

Seireg and Howard (30) developed an approximate normal mode method

of analysis which permits any linear non-conservative system to be



solved by superposition of uncoupled coordinates. The normal mode
method does not generally apply to damped systems. Only a particular
class of damped systems, originally defined by Rayleigh (31) and later
generalized by Caughey (32), can be uncoupled by the same transfor-
formation which uncouples conservative systems. Foss (33) and O'Kelly
(34) later described the complex transformations that are required to
uncouple certain damped systems. These results, although technically
uncoupled, are so complicated that the primary objective of using normal
modes is defeated.

Seireg and Howard (30) developed an approximate method which allows
any lumped parameter linear system subjected to an arbitrary forcing
function to be approximately represented by equations uncoupled by the
same transformation which uncouple the conservative systems. Their
method utilizes experimental response curves determined by exciting the
systems with pure tones. These response curves are utilized to deter-
mine the damping ratios (Zik) as described by Bruel and Kjaer (17). The
amplitude ratios at each natural frequency are used to approximate the
eigenvectors of the system. Knowing the relation between the eigen-
vectors (Vik) and the modal participation factors (ak) to be by defi-

nation,
)

12{ Vik % =1 (2-7)

the system of simultaneous equations may be solved for the modal partic-
ipation factors a . The single-resonance assumption that the nonreso-
nant components of the damping are to have negligible effect at the
natural frequencies, produce what are called the fictitious damping

ratios (gik)'. They are defined by,

g:'Lk Z

\ (2-8)

These fictitious damping ratios are used to evaluate the fictitious dis-
placements in each mode of vibration. The summation of the independent
modal displacements produces the total displacement at each point on the

plate. The fictitious damping ratios reduce to modal damping ratios

8 i



when the damping of the system is small. This method produces re-
sulting displacements which vary from the expected values by less than
ten per cent when the damping ratio is less than 0.10.

The method of analysis utilized in this investigation is similar
to that used by Seireg and Howard (30). The essential difference is
that the damping ratios in this investigation are sufficiently small
(Figure 21) to justify utilizing modal damping ratios rather than fic-
titious damping ratios. In this investigation, the eigenvectors,
eigenvalues, and modal participation factors are determined analytically
rather than by the use of tﬁe experimental data.

The method of transfer matrices described by Lin (11), (26),
McDaniel and Donaldson (27) is also a method of analysis for plates sub-
jected to a random excitation. Dokanish (35) later expanded the trans-
fer matrix method by combining it with the finite element technique.
The general technique for applying this method of analysis is to assume
the plate is composed of several rows of panels; each row of panels is
assumed to be separated by inflexible stringers. The panels in each
row are separated by flexible stringers which are perpendicular to the
inflexible stringers. The response of this system is assumed to be
harmonic in the direction normal to the inflexible stringers and to be
random in the direction parallel to the inflexible stringer. Each panel
may then be subdivided into strips which have their edges parallel to
the stringers. The stiffness and mass matrices for each strip are then
calculated. The equilibrium equations are determined to obtain the
relation between the right and left edges of each strip. Requirements
of displacement continuity and force equilibrium at the edges common to
two adjacent strips gives the transfer matrix relation. Successive ma-
trix multiplication finally relates the variables of the left and right
boundary of each panel and eventually of the entire plate. Boundary
conditions require the determinant of a portion of the overall transfer
matrix to vanish at the natural frequencies of the system. By substi-
tuting values of frequency until the determinant vanishes, the natural

frequencies are determined. The method also produces the mode shapes



of the system.

Another method of analyzing the random response of plates in the
utilization of an analog computer to model and solve the problem.
Murphy and Swift (37) and Barnoski (12) are some of the authors who
have utilized this method of analysis. Through the use of analog com-
puters and control system techniques, a deterministic function is gen-
erated which has the correct statistical properties of the random
excitation. This function is used to solve in a deterministic fashion
for the response, which is described statistically in terms of dis-
placement of stress.

For this method of analysis the kinetic and strain energies are
calculated and the equations of motion are derived by using Lagrange's
equation. A gaussian noise generator supplies the "white noise' which
is passed through additional shaping filters to produce voltates which
have the statistical representation of the forcing function. The dif-
ferential equations are then solved by the analog computer.

The selected investigations discussed in this section indicate that
a great deal of work has been done on this problem. The primary devel-
opment in this area has been in the realm of analysis. Although more
work needs to be done analytically, the primary concern now is to de-

velop techniques applicable to practical structures. With all the

analytical work accomplished, very little experimental work has been
performed to verify the results of the analyses. A spectacular example
of the additional work needed in this area is the unexpected fatigue
cracks which developed on the Air Force's huge C5-A transport aircraft.
These cracks are believed to be caused by the same type of random ex-
citation which is the motivation of this investigation. Although this
problem originated with modern flight vehicle structures excited by jet
or rocket engine noise, it has been found to apply to many other sys-

tems.

10



3. ANALYTICAL EQUATIONS OF MOTION

This section covers a derivation for the mean square response of
the panel structure by using an approximate normal-mode method for a
damped, lumped parameter system. A scaled drawing of the actual plate
fis shown in Figure 1. This structure is represented by the lumped mass
system shown in Figure 3. The displacements of the masses, x(I), I =

b

1, 2, 3, ..., 14, are perpendicular to the ﬁlane of the plate andl

v |
referenced to inertial coordinates. Energy expressions for the system!

1 are:{

N
Kinetic energy =T =% ¥ m, x

N
Work done =W = % f, x,

Lagrange's equation in normalized coordinates for a multidegree of

freedom system can be written

g_(g)_aT U 3 _ MW

= +== +— == -
dt . (3-1)
%o T T
where the coordinate transformation is defined as

|

|~

i kzl Vi %
(3-2)

11 |
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This transformation is necessary in order to uncouple the equations
of motion for the system. It is shown in Appendix A that the Vik's
necessary to perform this transformation are the eigenvectors which de-
scribe the normal modes of the free, undamped vibration system. The
eigenvalues associated with each of the eigenvectors are the undamped
natural frequencies of the system and can be obtained along with the
eigenvectors by solving the differential equation of motion for the free
undamped vibration system.

Substitution of the transformations into the work and energy terms,

and utilization of the orthogonality relationship given below,

~

0, for k # m
N
z ml Vlk im - <<j
i=1
N 2
2 m, V, , for k=m
, i ik
i=1
\
e
0, for k # m
N N
I % K,V V. = <<
i=1 j=1 3 ¢ NN
Y X K .. V.., for k = m
i=1 j=1 ij ik " jk
N

with the frequency equation for the undamped free vibration system,

N N N s o f
L T K,V V, =
1=1 j=1 11 ik jk 151 ™ Vik %k ]
and making the substitutions,
N N o, (3-3)
S % K,.,V, V, = -3
fo1 jo1 B3tk gk T MYk \

13



N
Mk = 2 m V?
i=1 i ik
N N
Ke = ifl le K5 Vik Vik
N N
%= 2 le €15 Vik Vik
one obtains:
N N . N .
T=% X £ m V, V =% T
i=1 k=1 i ik 'k Xk k=1 Mk Xk

N N N N 2 9
U=% % ¥ £ K,,V, V =% = w

k=1 i=1 j=1 ij ik jk Xk Xk k=1 Mk k Xk

N N N L. N N N
D=% ¥ ¥ & C,, V., V, =% ¥ X X cC,

k=l i=1 j=1 13 ik Jk hTELE D j=1 1

By
following set of equations are obtained:

where

Equation 3-4 is converted to the form which represents

14

°2
V1k jk Xk

substitution of these relations into Lagrange's equation, the

(3-4)

(3-4a)

uniform



viscous damping by using Equation 3-3.

F

c
- 2 k 2 k
+ o +==w = = (3-5)
Xk k Xk Kk k Xk Mk

If Ck/Kk is constant for each value of Kk in Equation 3-5, the
system has uniform viscous damping. This is a good approximation for
systems in which the damping is an inherent property of the spring
material (13). Since the physical structure utilized in the experi-
mental work was constructed of aluminum and the inherent damping of the
aluminum was the only damping considered, the above assumption of Ck/Kk
equal to a constant is valid for this system. It is shown below that
this constant Ck/Kk equals ZZk/wk, where Zk is the modal damping ratio.

By definition '

ZJKk Mk , critical damping coefficient

Cck =
yA =-C—k-" ' |
k Cc

k,
Yk J% |

Substituting into the above expression, one obtains

C Z Cc

P
o
o

]

R
?‘_8
e

],
<]
N

15
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Ke 9

Equation 3-5 with the above substitutions now becomes

F

%k+w§xk+2zkwkkk=ﬁ-t

The solution of Equation 3-6 may be determined by the well-known

(3-6)

method of convolution (13) to be

3-7

1 i . }
y Io Fk(T) exp [f Qk ®q (t-T)] sin wd(t T) dT

T,

where

2
d_wal-zk

w. =
_ 2
t = time
T = t2 - t1

Since a function to adequately represent the forcing function Fk(T)
cannot be written explicitly, a probabilistic representation must be
utilized. This representation essentially transforms the deterministic
problem from an explicit forecing function and a resulting definite value
for the response to the probabilistic problem with the input forcing
function given as a power spectral density and the output, as the mean

square value of the response.

It is assumed that the excitation is at least weakly stationary,

which defines its expected value (mean value) to be a constant and its

16\
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autocorrelation function to depend only on T = t2 - t . The auto-

correlation, Rxx’ is defined by
Rxx(tl, t2) = E x(tl) x(t2)] \

where the E denotes expected value,

E[x] = Ifm X fx(x) dx !

where fx(x) is the probability density function. 1In equation form, the

above definition of a weakly stationary force F is

E[?(ti] constant \

Rpp(tys £y) = Rpp (€5 - ty) = Rpp(m)

V

From the statistical analysis of the actual random excitation that
was used as an input to the structure, it was found that the excitation
was indeed weakly stationary (Section 6). The response to a weakly sta-
tionary excitation is nonstationary for small values of time (t). The
response becomes weakly stationary after the system has been exposed to
the weakly stationary excitation for a sufficiently long period of time.
Lin (11) states, for example, that a sufficiently long period of time is
four natural periods if the damping ratio Z = 0.1, or about twenty nat-
ural periods if Z = 0.02. These times are required for the effects of
configuration of the system at t = 0 and the resultant transient re-
sponse to die out. The resulting weakly stationary response is anal-
ogous to the steady-state response in the deterministic vibration
theory.

The power spectral density (@XX) is defined as the Fourier trans-
form of the autocorrelation function (Rxx) of the weakly stationary

random variable (x(t))
A .
= — R -iwT)d
Qxx @) 2m J-w xx(T) exp (-iwr)dr

17
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The inversion formula can also be written as

(oo}

Rxx('r) = j_m @xx(w) exp (-iwTt)dw

where, i, as used in the exponential term here and in the appropriate
equations to follow, is equal to V-1.
The significance of this expression is apparent where T is allowed

to approach zero for large values of time (t).

R_(0) =] .8 () a \

|
R_(0) = E[x(t), x(tl)] - E[xz(tl)] = %2(t) }

- |

%% (1) = I_m ¢ (wdw (3-8)

This last equation equates the mean-square response to the integral
of the response spectral density. From the work dome by Lin (11), the
relationship between the spectral densities of the excitation and the

response is obtained.

\

3 () =8 [HW | | (3-9)

Substituting Equation 3-9 into Equation 3-8, one obtains

©
x2(e) = [ e [H@)|? (3-10)
The analysis will be accomplished in two parts: one, assuming
that the power spectral density is a constant; and two, assuming that it
is not a constant. The results of these two parts will be compared in
Section 6.
If the spectral density of the excitation changes very slowly in
the vicinity of the natural frequency of the system, it can be assumed
that' this spectral density is a constant for all values of frequency

and that the value of the constant is the value of the spectral density

18 !



evaluated at the natural frequency. This implies that @FF(w) is a con-

).

stant and is equal to CDFF(wk

0
-2 _ 2
x2(6) = (e [ () | dw
The transfer function H(w) is determined by exciting the system
with a sinusoidial forcing function £ and arranging the resulting re-
sponse X in the form
x, (£) = H@®) £, (t)

Utilizing Equation 3-6

. o 2
X.k+2kakX.k+ka.k=

T

where

= it
Fk Fko exp (iwt)

and Xk is assumed to be.
Xk = Xko exp (iwt)

X =X exp (iwt) (iw)

> . L N2 2 .
Xk = Xko exp (iwt) (W) " =-w Xko exp (iwt)
Equation 3-6 then becomes

-Xko wz exp (iwt) + Zkak Xko(ﬂn) exp (iwt)

2 . Fko .
+up X, exp (WD) = 5 exp (we) |

" |

2 2. . _ ko
Xko (wk -w + 2i Zk W, w) =

F
Xk - ko
o MkEni - w2 + 2i Zk wk ® ]

19 .



Fko exp (iwt) Fk

2 2. .. =22,‘,]
Mk[@k - w 4+ 2i Zk wk w] MkE”k - W + Zlézk W w

Xk =

Substituting Xk into Equation 3-2 and substituting Equation 3-3a

and 3-4a into the resulting equation, one obtains

N
=
N Vik . fj ij
i=1
X, = z N
=1 2 2 2 . ]
.2 mj ij Enk -w +2i2 0 0 \
j=1
N
=
N Vik . P Aj ij
5 1 i=1
X 7 N 2 )
=los ow vd [of - o* + 212 0 o]
j=1 J 3
Define
= 1 ’/«
& TN )
X m, V.k :
=1 4 \ (3-11) |
N N N
T f£,V, = % PA, V, =P % A, V, =PA
FI T S L R A L j=1 3k A |
where P = uniform pressure applied to all masses
5 = area of each mass
_ N
= X A, V,
Ak =1 i jk
X "
X, = by > 3 P
k=1 E»k -w + 2i Zk W, wj




It can now be seen that H(w) is determined to be

N a‘kvikz'k

Hw) = &
2 w2
w Il --;E + 2i Zk ™

2 =2
3 ik Ak

< L0 @)

Substituting IH(w)l2 into Equation 3-10, one obtains the general

M=

() | =

equation for the steady-state mean-square response at the ith location

for a lumped parameter system.

2.2 =2
N = a, Vv Aﬁ
. k 'k
Ei(t) = = f_m @FF(Q) = do | (3-12)

k=1 , wi[(l - —) (221,( 2_92]

" If the power spectral density can be assumed to be a constant with

respect to frequency, Equation 3-12 becomes

. 2 2 =2
2 N 3 Vi A
26y = T o) |,

R T i

The integral in Equation 3-13 may be evaluated by the theorem of

dw |(3-13)

residues as given in references (11) and (15). (See Appendix B)
2 2 .2 =2
r’ ELk 11<Akd‘” _ M Vi A
-0 2.2 3.
4 21.) ( ) ] 2Z,. W
Wy ( 5) + 2Z kK "k
%

(:’ | 21 |



Considering only the physically realizable part of the frequency

spectrum, the above equation becomes

2 2 =2 2 .9 =2
f“’ 2 Vi By T Vi A
o 2.2 2 - 3
w4[(1 - (—”—) + (zz -‘”—) :l 4y O
ki 2 k w
w k

-

The integrated form of Equation 3-13 becomes \

2.2 =2
N mTa, V: \
RHE) = T app () —E 1k " (3-14)
k=1 4z, wi \

Utilizing Equation 3-14, one can obtain the steady state mean-
square response for a system excited by a nearly constant random force.
The random force in this case must be nearly constant in the neighbor-
hood of the natural frequencies. If this latter condition is not met
by the system being analyzed, Equation 3-12 must be utilized. 1In
Section 4, the physical plate will be modeled in a lumped parameter for-
mat. The appropriate lumped parameter will be calculated and substi-
tuted into Equations 3-12 and 3-14 respectively. These two outputs will
be compared with the intention of determining the error involved in as-
suming a constant power spectrum in the neighborhood of the natural

frequencies for a particular input power spectrum.
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4. LUMPED PARAMETER MODEL OF THE PLATE

In this section, the particular plate shown in Figure 1 will be
modeled as a lumped parameter system. The'physical quantities such as
mass, damping, and stiffness will be lumped at fourteen different lo-
cations on the plate (Figure 3). The methods used to apportion values
for the lumped parameters will subsequently be discussed. Equations
3-12 and 3-14 will be evaluated using the derived values for the
lumped parameters will subsequently be discussed. Equations 3-12 and
3-14 will be evaluated using the derived values for the lumped para-
meters. The final results will be given in terms of the power spectral
density of the output response and the root mean square maximum dis-
placements at the fourteen locations and will be calculated by the two
analytical methods discussed in Section 3.

The experimental plate was square for fabrication convenience; how-
ever, the analysis is general for any plate configuration. Since the
plate was square, it would have been possible to model only one-eighth
of the plate and maintain geometrical symmetry and obtain the deflec-
tions of the remainder of the plate through geometrical considerations;
however, the small variations in the dimensions of the physical system
(plate plus frame) from the dimensions which would make the system per-
fectly symmetrical caused some concern as to how the response may be
affected, and accordingly, it was decided to model the entire plate and

structure.
The number and location of the lumped masses were arbitrary, but

once selected, became fixed and the distribution of the total mass to
each of the selected lumped mass points was determined by the rule of
pleasing proportions. This rule of pleasing proportions is based on
knowledge obtained from numerous lumped parameter investigations of
beam vibrations. One investigation (21) indicated that a beam which is
proportioned such that one-half the total mass is lumped at the center
and one-quarter at each of the ends, will produce analytical results

which compare very favorably with the predicted values for the natural
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frequencies of the beam considering the beam as a continuous structure.
The central area of the plate is partitioned into thirteen masses and a
fourteenth mass is used to represent the outer edge of the plate and

the fixed frame (Figure 3). Each of the nine panels (Figure 1) is pro-
portioned such that half the mass of each panel is lumped at the panel's
center and one-eighth of the mass lumped at each of the four outer edges
of each panel. The masses lumped at the center of each panel are the
ones shown in Figure 3 with the associated numbers: 1, 6, 7, 8, 9, 10,
11, 12, 13. The lumped masses numbered 2, 3, 4, and 5 in Figure 3 are

comprised of the mass of the adjoining stringers and the edge mass of

the adjoining panels. The edge mass of the panels which are in direct
contact with the outer frame are lumped with the mass of the frame as
the mass numbered 14 in Figure 3.

The influence coefficient matrix, which is the inverse of the
stiffness matrix, for the fourteen mass system is determined by two
methods. Analytically, the influence coefficients are determined by
using Weaver's structural analysis programs named FR1 and FR3 (16).
Experimentally, the influence coefficients are determined by measuring
deflections of the lumped mass points with a dial indicator when loads
are applied at the various mass points. Loads ranging from five to
thirty pounds when required in increments of five pounds were applied at
each point, and deflections at all mass points were measured for each of
the applied loads (Table i).{ The value of the influence coefficients
are then determined by dividing the measured value of the deflections in
inches by the applied load in pounds force. An average value over all

the applied loads is then calculated for each lumped mass point. For

TABLE 2a
Loads (Pounds) 5 10 15 20 \
l
Deflections (Inches) .007 .018 .028 .038 \
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TABLE 1 |

Root Mean Square Amplitudes of Vibration (Inches)

Error
Mass Equation Equation Between Exp.
Points 3-14 ) 3-12 } Experimental and Eq 3-12 \ -
1 .0340 .0175 .01418 23.2%
2 .0227 .0117 .00824 41.0%
3 .0255 .0131 .01097 19.1%
4 .0250 .0129 .01059 21.7%
5 .0248 .0128 .00915 39.1%
6 .0130 . 0067 _*
7 .0128 .0067 -
8 .0134 .0069 _
9 .0130 . 0067 _
10 .0057 .0029 _
11 .0062 .0031 _
12 .0056 .0029 _
13 .0059 .0030 .
14 .0000 .0000

*Experimental Data not available
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example, shown in Table 2a preceding|are typical values of load and de-

flection at the center of the plate. These values are then used to

fill the 14 x 14 matrix of influence coefficients. See Table 2.
In order to utilize FR1 and FR3 in determining the analytical co-
efficients, the plate is represented by a dense network of beams. These

beams are represented in Figure 3 by the symbol for a spring (—AVAV')-
The results indicate, as was expected, that the more dense the network

of beams used to represent the plate, the better the correlation between
the analytical and the experimentally measured values of the influence
coefficients. Table 3 shows the analytically determined influence co-
efficients using the network of beams shown in Figure 3. This network
of beams represents the most dense network of beams as applied to the
solution of this problem, and Table 3 represents the best analytical
approximation to the experimental data in Table 2. The effect on the
natural frequencies of the system is the most important factor to be
considered when analyzing the difference between the two sets of influ-
ence coefficients in Table 2 and Table 3. A‘comparison of the natural
frequencies of the system when calculated by using the experimental and
the analytical values of the influence coefficients is shown in Table 4.
The final results presented in this investigation are the results deter-
mined by utilizing the experimentally measured values of the influence
coefficients.

As mentioned in Section 3, the damping associated with this system
is assumed to be an inherent property of the spring material, aluminum.
In this investigation, the total damping of the system was measured in-
directly from forced vibration traces and assumed to conform to the re-
strictions imposed upon the system in Section 3, particularly modal
damping. This assumption proved to be valid for the particular system
being modeled because of the relatively low values which were measured
for the damping ratios (Figure 21). Authors Lin (11) and Seireg (13)
give 0.04 as a sufficiently low value for the damping ratio in order
order that this assumption be valid. Since all measured values of the
damping ratios in the frequency range of interest are below the 0.04

i
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TABLE 4 |

NATURAL FREQUENCIES(HZ) DETERMINED BY USING
EXPERIMENTAL . AND ANALYTICAL INFLUENCE COEFFICIENTS

. . - —— . T G W W M D e W T M D G G G T G SIS WS MR G W e R S A W Shis M S G .

EXPERIMENTAL ANALYTICAL
3647620588 3647590637
6027374878 59,8366852
100+ 591385 106,387955

111057571

1384671692

253,736816

2564553955

28053063965

2932056885

298, 384961

31023209068

3130791260

322,451758

4380847412

1060861526
143,428879
2554540680
2625554687
268,186768
279-673(96
2876891357
301;617578
3050689697
3115158936

3315779785

29



value (Figure 21), the assumption is substantiated.
The damping ratios were determined from the typical experimental

response curves shown in Figures 17, 18, 19, and 20. Actually, 19 E

curves were utilized in the investigation. The damping ratios were cal-
culated at each natural frequency for each location on the plate. The
curves showing the results of these calculations, Figure 21, indicate
that the damping ratio is a function of frequency and not a strong func-
tion of location on the plate as noted by the relatively close grouping
of the data points at each frequency. The particular values for the
damping ratios (Z) at each frequency are determined by the functional

relationship,

N
I
NP
thirh

where f is the damped natural frequency or the value of the frequency
associated with each major peak in the power spectral density plots.

Af is defined as the half power bandwidth or as the frequency range
spanned by the response curve at the point on the curve which has half
the power as does the peak value at the damped natural frequency (12),
Q7).

The particular shape of the excitation power spectral density with
regard to the location in the frequency spectrum of the natural fre-
quencies of the system will determine which equation, 3-12 or 3-14,
should be used to calculate the root mean square response of the system
(11). If the excitation power spectral density is constant over the
range of frequencies spanned by the natural frequencies of the system,
Equation 3-14 can be used; if the excitation power spectral density is
anything other than a constant over the frequency range of interest,
Equation 3-12 should be used to obtain best results. For camparison
purposes, the excitation shown in Figure 2 is used as the input for both
Equations 3-12 and 3-14. The resulting root mean square displacements
are shown in Table 1, along with the corresponding values measured ex-

perimentally. In the course of evaluating Equation 3-12 the necessary
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data for plotting the analytical power spectral density was calculated
as described in the computer solution of the problem and eventually

plotted (Figures 4 through 16).
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FIGURE 4.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 1
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FIGURE 5.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 2
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FIGURE 6.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 3
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FIGURE -J.
THEBGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED:MASS NUMBER U
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FIGURE 8.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER S
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FIGURE 8.
THEBRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 6
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FIGURE 10.
THEQRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 7
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FIGURE 11.
THEQRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 8
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FIGURE 12.
THEGRETICAL RESPONSE POGWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 8
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FIGURE 13.
THEGRETICAL RESPANSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 10
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FIGURE 1H.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 11
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FIGURE 15,

THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 12
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FIGURE 16.
THEGRETICAL RESPONSE POWER SPECTRAL
DENSITY AT LUMPED MASS NUMBER 13
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FIGURE 17.

EXPERIMENTAL RESPONSE POWER SPECTRAL
DENSITY CORRESPONDING TGO MASS 1
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FIGURE 18.

EXPERIMENTAL RESPONSE POWER SPECTRAL
DENSITY CORRESPONDING TO MASS 2
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FIGURE 19.
EXPERIMENTAL RESPONSE POWER SPECTRAL
DENSITY CORRESPONDING TO MASS 3
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FIGURE 20.
EXPERIMENTAL RESPONSE POWER SPECTRAL
DENSITY CORRESPONDING TO MASS 8
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5. COMPUTER EVALUATION OF THE EQUATIONS OF MOTION

In this section, the computer program which was developed to per-
form the calculations necessary for evaluating Equations 3-12 and 3-14
will be discussed. (This program is listed in Appendix B.) The neces-
sary inputs to this program are: (1) the mass matrix, (2) the influence
coefficient matrix, (3) the modal damping ratio matrix, (4) the power
spectral density of the excitation and (5) the operational parameters
(Figure 22). With these inputs, the computer will calculate the stiff-
ness matrix, the natural frequencies of the structure, the mode shapes
of vibration, the modal participation factors, the power spectral density
of the response, and the root mean square displacements of the system.
The program is also capable of generating the necessary data for plotting
the power spectral density of both the excitation and the response.

Before the progression of calculations performed by the computer
program and the methods employed to perform these calculations are dis-
cussed in detail, a very basic breakdown of the program is given. The
basic format on which the program is structured can be seen from these
major steps: (1) the input of the appropriate data, (2) the calculation
of necessary parameters, (3) substitution of the necessary parameters
into Equations 3-12 and 3-14, and (4) printing the desired results.
These four divisions are indicated in Figure 21 by the corresponding
Roman numerals. Steps in the flow diagram which are located between
the horizontal dash lines are the ones associated with each of the four

major steps numbered between these lines.
The first major division of the program is devoted to reading the

appropriate data necessary for calculating the parameters of the problem.
The flow diagram (Figure 22) lists the particular items which are read
into the computer program. The particular order and format for inputing
the data is shown in the program listing in Appendix C. The first set

of six 'A' format read statements are the common titles which will be
printed on the power spectral density plots. Particular titles will be
read in the same D@ Loops performing the particular calculations. The

'\,
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FIGURE 22: FLOW DIAGRAM

READ

Titles, Cases, Dimension, Degrees of freedom, Mass
Influence Coefficients, Damping Ratios, Excitation

— _

CALL DECOMP |

CALL INVERT

Y

Combine Mass and
‘Stiffness Matrix

CALL JACOB

A

Transform Eigenvalues
And Eigenvectors into
Real System

A

Print Eigenvalues
And Eigenvectors

4

Calculate Modal Participation
Factors by Equation (III-11)

| STOP

A S
CALL GRAND |
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FIGURE 22v,(Continued)

Equation (III-12)

1
NO W=EXIC |
YES
Evaluate .
Equation III-14
Y
Print X |
' NO

YES

Evaluate

STOP

NO

Print WO

CALL GRAND

Print XL

CALL WEBAL

Plot WO, WI

=K

YES

STOP
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next read statement identifies the number of data sets (K) and the actual
dimension size of the influence coefficient matrix (NA). The number of
degrees of freedom (N) is read in next. The mass (AMASS), area of exci-
tation for each mass (FA), the damping ratio (Z), the constant value of
the excitation power spectral density (W), the variable values of the
excitation power spectral density (WI), and the influence coefficients
(A) are inputed in this same order. The mass, being read in, in units
of pounds force, is converted to the proper inch-pound-seconds system of
units by dividing it by 386.4. The values of WI are also converted back
to their actual values by multiplying by 10_5. If the excitation power
spectral density is not a constant, one inputs a zero for W in the data
deck. 1If the excitation power spectral density is a constant, one in-
puts a minus one for WI in the data deck.

The second major division in the program begins by calling subrou-
tine DECOMP. This subroutine decomposes the influence coefficient matrix
into an upper tri-diagonal matrix and tests the matrix to determine if
it is a real symmetric matrix (18). If it is not a real symmetric matrix,
the next step cannot be performed and the program is sent to stop.‘ If
it is a real symmetric matrix, the program then calls subroutine INVERT,
which inverts the influence coefficient matrix and produces the stiffness
matrix. The stiffness matrix (A) is then transformed by the inverse of
the mass matrix in such a fashion that the resulting matrix (A) is still
symmetrical. This matrix is now in the proper form for substitution in-
to subroutine JACOB. This subroutine calculates the eigenvalues and
eigenvectors of the system by using the Jacobi Method for real symmetric
matrices (20). The resulting eigenvalues are converted into units of
hertz and the eigenvectors are transformed back into the real system by
multiplying them by the inverse square root of the mass matrix. The
total area over which the excitation is applied and the generalized area
are calculated. The mass matrix and the eigenvectors are then used to
calculate the modal participation factors as described by Equation 3-11.
At this point, the displacements of the plate are referenced to the

fixed frame (fourteenth mass) by subtracting the eigenvector component
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associated with the fourteenth mass in all the modes of vibration,
[V(14,J)], from the other eigenvector components.

It can be seen in Figure 2 that the excitation power spectral den-
sity is not a constant in the particular case being investigated, but
evaluation of Equation 3-14 was performed for comparison purposes by ap-
proximating the curve in Figure 2 with an average value. Subroutine
GRAND is called to integrate the curve in Figure 2 from 6 to 500 Hz.

The average value of the curve is then obtained by dividing the inte-
grated value by 495, which is the total frequency range.

The third major division of the program, the evaluation of Equations
3-12 and 3-14 is initiated by testing the value of W. If W is equal to
zero, W is set equal to EXIC which is the average value calculated by
subroutine GRAND. At this point, the other quantities necessary for
substitution into Equation 3-14 have already been stored in the computer,
and determination of the root mean square displacements (x) is merely a
matter of performing the required mathematical operations. The factor
27 is used to convert the frequency units from Hz (cycles per second) to
radians per second. The constant 165.5 determined by calibration proce-
dures discussed in Section 5, effectively converts the excitation from
volts to pounds force. The output (x) is now printed as the response
displacement of each lumped mass in inches.

A test is performed on WI to determine if the evaluation of Equation
3-12 is necessary in this case. If this evaluation is not necessary,

(WI = -1) control is shifted to the next test, (L = K), which determines
whether or not any more cases are to be calculated. If no more cases

are to be evaluated the program stops. If more cases are to be eval-
uated, the control is sent to the beginning of the program, and the cycle
is started again by reading new data for the next case. If WI is not
equal to a minus one, the sequence of calculations continues. The power
spectral density of the response is calculated using Equation 3-9, or
equivalently the integrand of equation 3-12. The calculation is per—
formed in 1—H; increments over the frequency range of 6 to 500 Hz. The

response power spectral demsity (WO) is multiplied by the same conversion
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factors (2m and 165.5) as applied in the displacement calculations of
Equation 3-14. The resulting power spectral density of the response is
now in terms of pounds force squared per hertz.

The fourth major division of the program is begun by printing the
response power spectral density (WO). Subroutine GRAND, which utilizes
a Simpson's rule integration technique, is called to integrate WO over
its range of frequencies to produce the mean square values of the dis-
placements. The square roots of these values produce the root mean
square values of the displacements (XI) in inches; XI is then printed.
The particular titles for each data set are read in as 'A' format data.
The subroutine WEBAL is called twice to plot the necessary power spectral
density curves. The first time WEBAL is called, the power spectral den-
sity of the response at each lumped mass point (WO) is plotted (Figures
4 through 16). The second time WEBAL is called, it plots the power spec-—
tral density of the excitation (WI). See Figure 2. The number of cases
is tested (L = K). If more cases are to be calculated the program re-
turns to the appropriate read statement and the cycle of calculations is

again performed. If all the cases have been completed the program stops.
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6. EXPERIMENTAL TEST

The object of the experimental test was a determination of the root
mean square values of the displacements and the response power spectral
density of a plate (Figure 1) subjected to the random acoustical pres-
sure (Figure 2). The experimental tests were performed at Mississippi
Test Facility and financially supported by NASA through the Division of
Engineering Research at Louisiana State University.

The particular shape of this plate was chosen because its shape is
a simple geometric form and generally found in areas where the acous-

tical noise may be at a sufficiently high level as to cause damage to

the surrounding structures. As noted in Section 2, other investigations
in this area were made on the assumption that the stringers were suffi-
ciently stiff in at least one direction as to give the adjoining edge

of the panels a fixed boundary condition in that direction. See Lin

(26) and McDaniel and Donaldson (27). This particular plate has no such
restrictions and differs from other plates subjected to a random excit-
ation in that it resists analysis by the method of transfer matrices (26),
(27). The only fixed condition imposed on this plate are the fixed outer
edges.

The plate is constructed of sheet aluminum alloy 6061-T6 with a
modulus of elasticity of 1x107 lb—ft/in2 and a shear modulus of 4x106
lb—ft/inz. (These properties are standard handbook values.) The maxi-
mum thickness of the plate is 0.25 inch at the boundaries and stfingers.
The panel thickness is 0.125 inch. The plate was constructed from a solid
sheet of aluminum with the panel areas formed by milling away the unwanted
metal. The radius of curvature at the corners where the panels and the
stringers intersect is no longer than 3/16 of an inch, and the surface
finish is specified as a standard 63 smooth. All tolerances were held
to = 1/64 of an inch. The plate is shown in the foreground of Figure 23
fixed on all four edges by a 4x1/4 angle iron frame which is bolted to
the edge of the plate by 36 half inch bolts. The top and bottom frames

are also joined by two 1/2 inch thick plates which were attached on
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opposite edges of the plate and used to support the entire system of frame
and plate during the experimental test.

The plate was clamped before the strain gages were attached. Biaxial
and rosette type strain gages were mounted on the surface of the plate
primarily around the centrally located panel. Two strain gages were also
mounted on the frame. Figure 26 shows the location and alignment of the
strain gages. The strain gages were calibrated in the laboratory with the
use of the equipment shown in Figﬁre 23. The dynamic part of the cali-
bration procedure was performed in the Mobile Instrumentation Unit; this
trailer is shown in Figure 24. The equipment inside the Mobile Instrumen-
tation Unit is shown in Figure 25. The laboratory calibration was per-
formed by attaching weights to the particular points designated as lumped
mass points on the plate and measuring the strains and deflections at all
points of interest. See Table 6 for results of the strain measurements
and Table 2 for results of deflection measurements. It is noted that
strain gages are not located at all fourteen points designated as lumped
mass points in the analysis. This caused some concern until calibration
was completed on the five points shown in Table 1 which coincided both
experimentally and analytically. The five calibrated points produced
the same conversion constants and gave credence to the assumption that
these conversion constants were uniform for all points on the plate as
shown in the calibration calculations which follow.

Two conversion constants are necessary; one to convert the volts
representing the excitation power to pounds force, and a second factor to

convert the root mean square volts to displacement in inches.

The conversion of volts to pounds force is accomplished through the

set of linear equations.

AR = A(AV), e = B(AR), and L = Ce, where
AR = Change in resistance (ohms)
AV = Change in voltage
€ = Strain in inches/inch (6-1)

A,B, and C are constants to be determined through calibration procedures.

The desired relationship is determined by combining the above equations to
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produce L = ABC (AV), where L is the load in pounds force and AV is the
change in voltage in volts.
The calibration constant A is determined by placing 50,000 and

220,000 hom calibration resistors (RP) in parallel with the 120 ohm (RG)

strain gages. The AR is calculated from the equation (36),

R
R -
) (6-2)

in which the second term on the right hand side is the effective value of

resistance created by the two resistors R, and RP acting in paralle. The

G
two values of AR5 = ,29 ohms and ARZO = ,07 ohms. See Appendix D for
sample calculations. AR5 is determined by using the 50,000 ohm calibra-

tion resistor in Equation (6-2), and AR20 is determined by using the
220,000 ohm calibration resistor. Values of voltage were recorded on a
digital volt meter by switching the calibration resistors in and out of
the circuit until the change in voltage (AV) was stabilized. (See Table
5.) An average value for AV was then determined. This procedure was
repeated for both of the calibration resistors at each strain gage loca-
tion. The calibration constant A is then calculated by the equation,
A =-AR/AV. The constant A is expected to be uniform for all the strain
gages. since the initial value of resistance is the same for all gages.
The experimental data substantiates this statement. A, equal to 0.274,
represents an average value calculated for all strain gages shown in
Figure 27. (See Appendix D for sample calculation.)

The calibration constant B is determined for the equation which de-
fines the Gage Factor (F) in terms of resistance (R), change in resistance

(AR), and strain (g).

comparing the above equation with e''= BAR, B is seen to be defined as

1/RF; R and F are given by the strain gage manufacturers (Micro-Measurement,
Inc.) to be R = 120.8 ohms and F - 1.98. B is then calculated to be

equal to .00418.
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B Change in Voltage (4V) for Each Calibration
Resistor at all Strain Gage Locations

" TABLE 5

Strain
Gage Initial Final 120.8 Ohms in
Number D, C, Voltage D. C, Voltage Parallel with
1 -.047 +1.000 50,000 Ohms
-.020 +1.030 " "
-.013 +1.037 " "
-.036 +0.,2050 220,000 Ohms
1 -.020 +0.,1987 " "
-.050 +0.190 " "
-.057 +0.187 " "
-.054 +0.190 " "
2 ~-.065 +0.997 50,000 Ohms
-.066 +0.,996 " "
-.068 +0,995 " "
-.070 +0.993 " "
-.074 +0.988 " "
-.072 +0.989 " "
2 -.065 +0.175 220,000 Ohms
-.063 +0.178 " "
-.063 +0,.178 " "
-.066 +0.175 " "
3 -.254 +0.698 50,000 Ohms
-.240 +0.741 " "
-.43 +0.62 " "
-.4l1 +0,63 " "
-.40 +0.65 " "
3 -.36 -0.13 220,000 Ohms
-.34 -0.100 v "
-.33 -0.099 " "
-.121 +0.118 " "
-.121 +0.933 50,000 Ohms
4 +.120 +1.162 50,000 Ohms
+.111 +1.160 " n
+.104 +1.148 " "
4 +.090 +0,313 220,000 Ohms
+.070 +0,298 " "
+.077 +0.301 " "
+.072 +0,306 " "
5 +.010 +0.251 220,000 Ohms
+.009 +0.250 " "
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TABLE 5 |(Continued)

Strain
Gage Initial Final 120,8 Ohms in
Numbex D, C. Voltage D, C. Voltage Parallel with
5 +.009 +1.067 50,000 Ohms
+.010 +1.069 " "
6 +.064 +1.145 50,000 Ohms
+.068 +1,150 " "
+.068 +0.314 220,000 Ohms
+.070 +0.319 " "
7 +.156 +0,400 220,000 Ohms
+.153 +0.398 " "
+.152 +1.220 " "
+.147 +1.218 " "
8 ..000 +1.050 50,000 Ohms
. »000 +1.060 " "
. .000 +0.227 220,000 Ohms
-.016 +0,225 " "
-.018 +0.222 " "
9 .000 +0.227 220,000 Ohms
-.008 +0.264 " "
-,003 +0.260 " "
.000 +1.070 50,000 Ohms
+.029 +1,075 " "
+.050 +1,095 " "
+.065 +1.108 " "
10 ..030 +1.036 50,000 Ohms
+.002 +1.040 " "
+.008 +1.072 " "
+.015 +1,077 " "
+.035 +1.100 " "
+.035 +0.284 220,000 Ohms
+.040 +0.284 " "
+.037 +0.283 " "
11 +.368 +0.564 220,000 Ohms
+.365 +0.567 " "
+.367 +0.570 " "
+.370 +1.260 50,000 Ohms
+.378 +1.270 " "
64
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"TABLE 5 (Continued)

Strain .
Gage Initial Final 120.8 Ohms in
Number D, C, Voltage D, C. Voltage Parallel with
12 +.125 +1.165 50,000 Ohms
+.126 +1.168 " "

+.126 +0.360 220,000 Ohms
+.130 +0.363 220,000 Ohms
13 +.025 +0.262 220,000 Ohms
+.024 +0.261 " "
+.027 +1.071 50,000 Ohms

+.024 +1.070 " "
14 +.114 +1.184 50,000 Ohms
+.120 +1,183 " "
+.,120 +0,.364 200,000 Ohms

+.122 +0.363 " "

15 +.068 +0.312 200,000 Ohms
+.070 +0.312 " "

+.074 +0,319 " "

+.076 +0.318 " "

+.078 +1.139 " "

+.079 +1.140 " "

16 +.110 +1.160 50,000 Ohms
+.117 +1.165 " "

+.128 +0.365 220,000 Ohms

+.110 +0,355 " "

17 -.001 +0.237 .220,000 Ohms
-.028 +0.236 " "

-.024 +1,053 50,000 Ohms

-.008 +1.053 " "

18 +.021 +1.070 50,000 Ohms
+.010 +1.072 " "

+.016 +0.240 220,000 Ohms

+.009 +0.243 " "

19 +.048 -0.316 220,000 Ohms
+.045 -0.316 " n
+.045 +1,117 50,000 Ohms

+,043 +1.120 " "

!
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Values of Strain in Micro-Inches per Inch for

TABLE 6

Various Loads at Selected Strain Gage Locations

Strain

Gage Loads at Corresponding

Number Strain Gage Number (Pounds Force)

0 1 5 10 15 20 25 30

1 10,000 9,993 9,966 9,935 9,905 9,876 9,848 9,820
2 10,000 9,993 9,964 9,927 9,890 9,859 9,822 9,790
3 10,000 9,993 9,967 9,937 9,905 9,875 9,840 9,820
5 5,000 4,990 4,954 4,911 4,869 4,832 4,793 4,758
6 5,000 4,991 4,961 4,924 4,889 4,848 4,818 4,785
7 10,000 9,99% 9,966 9,929 9,890 9,859 9,824 9,792
8 5,000 4,99 4,965 4,926 4,889 4,856 4,822 4,790
13 5,000 4,988 4,944 4,888 4,834 4,780 4,726 4,674
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The calibration constant C is determined from the data recorded in
Table 6. This data was recorded by loading the plate at the desired points
of interest and recording the change in strain (¢) due to the applied loads
(L). The constant C is then calculated by the equation, C = L/ €. As noted
previously, strain gages were not set at all lumped mass points. An aver-
age value of the five points was used for all points. (A sample calculation
is shown in Appendik D.) The value for C is determined to be equal to
144 é 106. The conversion constant relating load (L) and voltage (AV)
may now be determined by multiplying the three calibration constants A x
B x C. This calculation is performed in Appendix D, the resulting con-
version constant is equal to 165.5. The equation defining the conversion
from volts to pounds force can now be written as L - 165.5 AV.

The second calibration constant, which relates volts to inches, is
obtained by adding another linear equation to the set of three equations
utilized in the above calibration. This equation, § = DL, relates de-
flections (8) and the (L) through the conversion factor (D), which is
seen to be the influence coefficients of the system. Solving this latter
equation for L = /D and substituting in the above conversion between volts
and pounds force, one obtains = 165.5 DAV. This conversion equation is a
function of location on the plate and will be evaluated for each point at
which both experimental and analytical data is available. (See Table 7.)

The equipment utilized in performing the experimental test is shown
in Figures 23,24,25. Figure 23 shows the plate and frame in the fore-
ground and strain sensing and recording equipment in the background. Figure
25 shows the equipment inside the Mobile Instrumentation Unit which was
used to sense and record nineteen channels of dynamic strain and will be
further described. Figure 24 shows the control center on the right, the
Mobile Instrumentation Unit at right center, the exponential horn with the
plate and frame mounted near its mouth at left center, and the pressurized
air storage vessels on the left.

The strain sensing equipment seen in the background of Figure 23 con-
sists of two Baldwin-Lima-Hamilton Strain Indicators and balancing units,

a Honeywell galvanometer oscillograph, and a Tektronix Memory Oscilloscope.
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. TABLE 7 |

Evaluation of 8 = 165.5D AV

AV = Peak
Value of rms

§ = Deflection

Mass D(from table 165.5D Response (Volts) in Inches
1 .00127 .2100 .0675 .01418
2 .00083 .1372 .060 .00824
3 .00102 .1688 .065 .01097
4 .00100 .1655 .064 .01059
5 .00098 .1620 .0565 .00915
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The equipment seen in Figure 25 consists.of a bank of signal conditioners
in the upper right hand corner, and a bank of amplifiers in the lower right
center of the figure. A multipleiing unit is located in the lower center
foreground. A nine track Lockheed tape recorder is seen on the table in
the upper left hand corner along with the direct current power source lo-
cated in the left center background. The control center in Figure 24 con-
tains the necessary equipment for operating the exponential horn. Included
in this equipment is a variable frequency signal generator, a bandwidth
limiting noise signal generator, and an amplifier. Switches for con-
trolling the flow of the compressed air from the pressurized air storage
vessels to the vibrator baffles of the horn are also located in the con-
trol center. The ekponential horn shown in Figure 24 has a profile which
is described by an eiponential function. It was rotated to the position
shown in Figure 24 and the plate was adjusted in the crow's nest in the
position shown such that the plane of the plate and the plane of the mouth
of the horn were parallel. This insured that an acoustical wave impinging
on the plate from the horn would impact the plate with normal incidence.
The radius of curvature of the wave leaving the mouth of the horn is so
much greater than the dimensions of the plate that this wave can be as-—
sumed to be plane. A near field test on the acoustical pressure field
impinging on the plate verified this assumption. Figure 32 (a, b, ©)

shows the correlation between the amplitude and the phase angle along
three radial lines in the plane of the plate. The four individual curves

represent the four radial distances at which the pressure was recorded.
The radial distances from the center of the plate are 0, 10, 20, and 30
inches. The three radial lines along which these four pressure measure-
ments were recorded are oriented with the horizontal y axis (a), the
vertical z axis (c), and the 45 degree diagonal comnecting the corners
of the plate (b). These curves substantiate the assumption that the
acoustical field is uniform over the entire area. occupied by the plate.
The curves shown in Figure 32 represent an 80 Hz pure tone. The same
series of test was performed for a 500 Hz pure tone to determine if fre-

quency has an effect on the pressure distribution. The relationship between
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amplitude and phase angles at the various locations of the 500 Hz pressure
field were the same as the ones for the 80 Hz pressure field. This sub-
stantiated the assumption that the pressure is uniform over the area oc-
cupied by the plate regardless of its frequency. This statement is inter-
preted to state that a random pressure field emmitted from the horn will
produce a uniform pressure field in the plane occupied by the plate.

The block diagram shown in Figure 27 represents the path followed by
the experimental data from its generation at the plate in the form of
strain to the final results represented by the power spectral demsity plots
and the magimum root mean square deflections. The plate and horn system
is composed of the plate instrumented with nineteen strain gages, the
frame, the structure supporting the plate and frame, and the exponential
horn. The'eéponential horn generates the random acoustical field which
eﬁcites the plate, causing the deflections of the plate to change the
resistance of the strain gages. Each strain gage is wired into a full
Wheatstone bridge circuit located in the signal conditioners. The change
in resistance is converted to an equivalent change in voltage as deter-
mined by the calibration constant. The resulting change in voltage is
directed into amplifiers which increase the voltage from millivolts to
volts (a factor of one thousand). The resulting magnified voltage is
sent into the multiplexing unit along with a one volt calibration signal.
The multiplex system stores the change in voltage on a high frequency
carrier. The five different carrier frequencies used to record the dif-
ferent channels of voltage are 200, 300, 400, 500, and 600 KHz. The data
was then recorded on the odd numbered (1, 3, 5, 7, 9) tracks of a nine track
tape. Five multiplex signals were recorded on each track, except track
number nine which contained three channels of excitation data. The cal-
ibration signal was recorded on each channel before each test for a
period of one minute. The calibration signal was a 1 volt, 80 Hz pure
tone generated from a 155 decibel sound source (See Figure 28).

Figure 28 shows the power level and the time duration of the four
excitations produced by the exponential horn. The figure shows the last

few seconds of the calibration signal starting at time equal zero. The

70



BlR(Q
uleils Jo

sTauuBy) 67

s9dp1ag| wo3sAg

sjuowoorB1dsI(Q sTsAieuy I9pi00o9y wo3sig auojsjeaym pue| | uxoyg
swx pue € e1eq[€ odeg, xmamﬂuﬁzz.AII+MMMMMMMMM«%&II siouoTITpuoy [ pue

S30Td dsd.| 1eudIg ?1eld

31s9], Tejuewiaadxyg Jo weiletq Joolg /7 MINDIA

71



Spuooog

00% 05€ 00€ 052 002 T Qo1 QS 0
L I { 1
oot
Okl
| [ oz1
\Jé -
o
[¢]
[ =l
5
i w
ot1l
L Ohl
%{L} .v
061
23eTd 2y3 o3 pd1Tddy uoIizelToxy
3o uoTjeing pue [9AdT IomMOd 187 HUNIIL _ s




LEN
U

signal drops down to the background level of 80 Hz pure tone excitation.
After 45 seconds of 80 Hz ekcitation, the signal drops down to the noise
floor for 45 seconds. The ne#t 45 seconds of eicitation consist of 139
decibels of random eﬁéitation having the same frequency spectrum as shown
in Figure 2. After another 45 seconds of noise floor, the output power
of the horn is raised approximately 10 more decibels. The same sequence
of excitation described above is repeated at the higher power levels.

The sequence of excitations is as follows: 80 Hz excitation for 45 seconds
at 151 decibels, 45 seconds of noise floor, and back to the calibration
level. The only excitation used in the data analysis is the 149 decibels
of random excitation for 45 seconds. The other tests were performed only
‘to check the signal quality generated by the strain gages and the general
behavior of the system. ’

The analysis of the data consists of printing the raw data and deter-
mining the root mean square value, the amplitude spectrum of the data
(Figure 29), the probability density of the data (Figure 30 and 31), and
the power spectral density of the data (Figures 2, 17, 18, 19, and 20).

Figure 29 is a representative slice of the data recorded by strain
gage number 2. The amplitude spectrum indicates the location of the
natural frequencies in the frequency spectrum and the amount of amplitude
associated with each frequency. The plot of the raw data shows the partic-
ular section of data being analyzed. The root mean square plot shows the
root mean square in volts of the data as a function of time. These root
mean square plots are scanned to locate the maximum root mean square values
of the data. (See AV in Table 7.) These maximum values will be converted
through the use of the calibration constants to the maximum root mean square
deflections of the plate in inches. (See § in Table 7.)

Figures 30 and 31 represent the probability density plots of the
response at strain gagebnumber 2 and of the excitation respectively.

Figure 31 represents a nearly perfect Guassian distribution which, as Lin
(11) indicates, determines the excitation to be at least stationary. The
probability density of the response (Figure 30) represents a near perfect

Guassian distribution, and by Lin (11) determines the response to be
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strongly stationary or analogously the steady state condition of the deter-

ministic theory. Lin also states that given an excitation whose probab-
ility density has a Gaussian distribution and a structural system which
is linear, the output response of the system will have a probability
density which has a Gaussian distribution. Figures 30 and 31 verify this
statement and also the assumption made in Section 3 regarding the excita-
tion being at least weakly stationary.

The power spectral density plot of the excitation shown in Figure 2,
along with Figure 31, contains all the information required to completely
define the random excitation. The power spectral density plots of the
response data shown in Figures 17, 18, 19, and 20 contain the necessary
information to completely describe the response. These plots can be used
to determine the natural frequencies of the system and the power stored
at all of these frequencies. Integration of the response power spectral
density curves produces the mean square response of the plate. Using the
square root of this quantity and converting to the proper units, the root
mean square displacements of the plate in inches are obtained. (See § in

Table 7.)
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7.. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The results obtained from the analytical and experimental work des-
cribed in Sections 3 through 6 are compared and discussed in this section.
Plausible explanations are given for the differences between the analytical
and eiperimental results. The particular results are discussed in terms
of the power spectral density.plots and the root mean square deflections.
The accuracy of approximating this plate with a network of beams is also
discussed.

Figures 4 and 17 represent the analytical and experimental power
spectral densities of the response. at the center of the plate. The general
trend followed by both these curves is in good agreement. The magnitude of
the peaks tend to decrease with an increase in frequency in both the ana-
lytical and experimental cases. The frequency (37 'Hz) of the first natural
frequency predicted analytically agrees very well with the experimentally
measured value of 38 Hz. The magnitude of these two peaks also agree
quite well. In this discussion, the peaks in the power spectral density
plots imply a natural frequency exists at that frequency. The peak having
the greatest amount of power is the first fundamental frequency of the
system. The importance of the agreement between experimental and analy-
tical values of magnitude and frequency at the first natural frequency of
the system is realized when one applies this analysis to the solution of
vibration problems. The magnitude and the frequency of the first natural
frequencéy of a structure is usually the most important information needed
to solve vibration problems associated with the structure. Good agreement
of the analytical and eiperimental frequency of the last peak (430 Hz) on
the power spectral density plots is also observed. The magnitude of this
analytical peak is low as compared to the magnitude of the experimental
peak. This trend of low values of magnitude for the analytical peaks is
consistent throughout the entire frequency spectrum with the exception of
the peaks at or near the first natural frequency of 37 Hz. This trend
becomes more pronounced as the frequencies increase. The experimental

and analytical frequencies of the system indicated by the peaks in the

79



S1d

power spec?rum tend to agree very well through the entire frequency range.
The only exception is a peak at 60 Hz in the analytical power spectrum
whose magnitude is t&oiorders»higher'than the peak indicated by the first
natural frequenCy'noted above. The trend of the small disagreemenf be-
tween values of frequency for the peaks, particularly in the midband fre-
quencies from 100 to 400 Hz, is for the analytical frequencies to be higher

than the experimental frequencies., Located at approximately 10 Hz in the
experimental power spectral demsity plot, a peak is observed which does not

show up on the analytical plot. This discrepancy can be explained by real-
izing also the reason for the shift of natural frequencies to higher values
on the analytical plots. One reason the analytical natural frequencies are
slightly high is because the entire structure supporting the plate and

horn system is not included in the lumped parameter model of the system.
Only the crow's nest, shown in Figure 22 as the platform protruding out
from under the mouth of the exponential horn is included in the modelfof
the system. The remainder of the supporting structure, including the horn
itself, is not accounted for in the analysis. The effect on the natural
frequencies of the system of including the entire structure which supports
the horn and plate would be to shift the lowest analytical natural fre-
quencies to a lower value and essentially leave the higher natural fre-
quency unchanged except for a small overall shift to lower values of
frequency. It is proposed that the value of frequency ﬁo which the lowest
frequency would be shifted would coincide with the peak at 10 Hz shown on
the experimental curve. The shift of the other amalytical natural fre-
quencies to lower values would tend to bring these values into bett agree-
ment with the experimental values. The peak at 60 Hz which would be shifted
to a lower value would then exist as the only peak on the experimental curve
which does not match with a corresponding peak on the experimental curve.

A possible remedy for correcting this problem is to distribute the mass

in such a manner that more mass is located at the center of the plate.

This modification would have the effect of lowering the magnitude and

frequency of the response near 60 Hz. This idea will be pursued after

a comparison is made of the next two power spectral density plots.
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Figures 5, 18, and 19 are representative of the analytical and the
experimental response power spectral densities of a lumped mass at the
intersection of two stringers on the plate. Both the analytical and
experimental curves possess the same trend which is the decrease in re-
sponse power as the frequencies increase. The only exception to this
trend is a peak on the experimental curve at approximately 430 Hz which
is not predicted on the analytical curve. This indicates that too much
mass is allocated to the lumped mass points in the peripheral area of the
plate near the frame. Allocating less mass to each lumped mass point near
the frame and adding more lumped mass points in this area will cause the
magnitude of the response peaks to increase at the higher frequencies.
This new distribution of the mass toward the center panel area will also
cause the frequency of the lower modes to decrease. If this distribution
of the mass is accomplished in an optimum fashion, the two peaks located
at 37 and 60 Hz would be shifted to match the experimental peaks at 10

and 37 Hz. The general tendency of the analytically determined magnitude

of the peaks, particularly at the higher modes of vibration, to be higher
than the corresponding experimental magnitudes would be rectified. The
analytical peak at 60 Hz can be diminished by placing several more lumped
mass points in the area of the central panel. Inclusion of these mass
points at the center of the stringers which surround the center panel and
at points on the center panel near the stringers would have the effect of
distributing the response over several frequencies in the neighborhood of
60 Hz. These additional natural frequencies could be adjusted by proper
allocation of the mass to the new lumped mass points. The net effect
would be to reduce the single peak at 60 Hz to a group of smaller peaks,
as seen in Figurer 18 and 19 in the frequencies neighboring 60 Hz.

The central portion of the frequency bandwidth from 100 to 400 Hz in

Figures 5, 18, and 19 match very well on both the analytical and experi-

mental curves in that no major peaks are observed on either of the curves
in this frequency range. This type of response is expected since the
lumped mass point is located at the intersection of two stringers, which

is the stiffest point in the central area of the plate. The stringers
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have a tendency to.become node lines for all modes of vibration higher
than the second mode and are eéactly“node lines for the third, sixth,
ninth and twelfth modes of vibration. This tendency has the effect of
allowing this lumped mass point to respond primarily to only the first
and second modes of vibration. This tendency is observed on the curves
in Figures 5, 6, 7, 8, 18, and 19.

Figures 11 and 20 represent the analytical and experimental response
power spectral densities at two points which are not geometrically equiv-
alent, but are located sufficiently close to one another to observe simi-
larities in their power spectral densities. Figure 11 represents the
response power spectral density of lumped mass number 8 (Figure 3) and
Figure 20 represents the response power spectral density of strain gage
16 (Figure 26). The root mean square displacements of the two points in
question are not expected to compare favorably, but the power spectral
densities do show some similarities in natural frequencies between the
two points. Bascially, the same similarities which were observed for the
two previous sets of response power spectral density plots are observed
for this pair Qf curves. The decreasing power of the response peaks as
the frequency increases is observed for both these curves. The first and
last natural frequencies at 37 and 430 Hz respectively, match very well
on both curves. The magnitudes of these peaks do not match as is expected.
The correlation between the experimental and analytical peaks in the mid-
bank frequencies of 100 to 400 Hz is good, but has the same shift of
analytical frequencies to higher values. The analytical peak of 60 Hz is
again the only major difference in natural frequencies between the two
curves. Although the two response points being discussed are not equiv-
alent points, the same basic similarities noted in their power spectral
densities as observed at the other points already compared indicate that
the entire plate possesses these similarities between the experimental
and analytical results. Figures 9, 10, 11, 12, and 20 support this
observation. Figures 13, 14, 15, and 16, which represent the power spectral
densities of the lumped masses at the corner panels, possess most of the

same characteristics noted in the comparison between Figures 11 and 20,
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and, in general, also support the aboVve observation. Correlated with this
observation is the observation that the modifications suggested to improve
the analytical results would apply over the entire plate.

The modifications needed in the analytical model, as noted above,
would redistribute the mass such that more mass is included near the center
of the plate. This additional mass near the center of the plate is coupled
with a corresponding decrease in the mass at the lumped points near the
fixed boundary of the plate. An increase in the number of lumped mass
points, particularly at the midpoint of the stringers, is also needed.

The entire supporting structure of the plate and horn should be included
in the lumped parameter model of the system.

The effect of these analytical modifications would be to shift the
analytical natural frequencies associated with each peak in the response
power spectral density plots to lower values of frequency. The first and
second natural frequencies would be shifted the greatest amount, and the
highest natural frequency would be shifted the least amount. The overall
level of power associated with the peaks at the higher frequencies would
be increased with respect to the power level at the lower frequencies.

All these effects on the analytical response power spectral density would
tend to make the resulting curves more similar to the experimental curves,

A comparison of the maximum root mean square deflections determined
both analytically and experimentally, is displayed in Table 1. The error
indicated in this table is the percent deviation of the analytical results
obtained by integrating Equation 3-12 from the experimental results.

The error between the experimental results and the results of utilizing
Equation 3-14 is in every case greater than the error shown for Equation
3-12 . The results obtained by using Equation 3-14 are approximately
100 percent greater than the results of Equation 3-12 and do not predict

the experimental results as well as Equation 3-12 . These comparisons
indicate that Equation 3-12 is not a very good approximation to Equation
3-12° for the particular excitation power spectral density shown in

Figure 2. The maximum deviation between the experimental and analytical

(Equation 3-12) amplitudes is only 41.0 percent. Considering the complexity
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of the system involved and the fact that by.definition a random vlbratlon
defies explicit definition, the 41.0 percent error represents an excellent
analytical prediction. Unfortunately, not enough experimental data points
were recorded to compare with all of the analytical points.

Table 4 lists the fourteen natural frequencies calculated by using
the experimentally measured and the analytically calculated influence
coefficients. The analytical influence coefficients are determined by
approximating the plate with a dense network of beams in which all inter-
sections of beams are made rigid. The eﬁperimental influence coefficients
are measured by recording the deflections of the plate due to calibrated
point loads. The two sets of influence coefficients are listed in Tables
2 and 3, but comparing the influence coefficients at each point in the
matriﬁ is not an efficient method of comparison in this case. A better
comparison is to observe the effect these two sets of influence coefficients
have on the results of this problem. The entire effect of the influence
coefficients on this problem is transmitted through the eigenvalues (natural
frequencies) and eigenvectors of the system. The analytical eigenvectors
are altered slightly from the experimental eigenvectors, and the effect
on the eigenvalues is represented in Table 4 by the natural frequencies.
The maximum root mean square values calculated by using the analytical
influence coefficients are altered by a maximum of 6 percent from the
values calculated by using Equation 3-12' and the experimental coefficients.
In most cases, these influence coefficients' root mean square amplitudes
are better approximations to the experimental amplitudes than the ones
- given by Equation 3-12° in Table 1. Generally, the influence coefficients
determined by the analytical method described in Section 4 are a good
‘approximation to the actual values and particularly for the purposes of

this problem produce very good results.



8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A lumped parameter analysis of a non-homogeneous plate subjected to
a random ekcitation produced makimum root mean square displacements which
compare very well to the results obtained by experimental tests. Results
from the experimental work when compared to the analytical show a range
of error from 19.1 to 41.0 percent.

The lumped parameter analysis yields its best predictions of the
experimental power spectral densities at the lower frequencies of vibra-
tion. The error of predicting the power level associated with each peak
increases as the frequency increases and ranged from an error of less
than one order of magnitude at the lower frequencies to four orders of
magnitude at 500 Hz.

' For the particular excitation utilized in this investigation, inte-
gration of Equation 3-12 with the actual excitation produces values of
maximum root mean square displacements which compare much more favorably
with the experimental results than the results produced by utilizing the
"white noise" approximation of Equation 3-14 and the average value of
the excitation.

The accuracy of predicting the peaks in the response power spectral
densities of the plate in question is strongly dependent on the proper
distribution of mass to the various lumped mass points. The distribution
of mass and the insufficient number of lumped mass points utilized in this
investigation are the major reasons a peak in the response power spectral
density plots at 60 Hz contained an erroneously large amount of power.

An increase in the number of lumped mass points and the proper dis-
tribution of mass to these points will also alleviate the problem of pre-
dicting low power levels at the higher frequencies.

The influence coefficients of the plate can be predicted sufficiently
well for this investigation by representing the plate as a dense network
of beams. The error in predicting the natural frequencies is less than

3.5 percent for the first thirteen natural frequencies.
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The damping ratié can be fegarded as a constant with respect to
A location on the plate, and as a variable With:respéct to frequency of
vibration. This is veritied by'e%perimentally measuring the damping ratio
(Figure 21) as both a function of location and frequency.
This method of analysis for non-homogeneous plates has the basic

qualities of simplicity and accuracy, and may be applied to a wide variety
of oddly shaped structures with an ease not found among other methods

of analysis.

Recommendations

The effect of various distributions of mass to the lumped mass points
on the response of plateé should be studied. Homogeneous plates subjected
to pure tones could be the first phase and the complexity of this study
increased until it includes non-homogeneous plates subjected to random
excitations. The object of the study would be to determine the optimum
proportions for allocating mass to the lumped points in order to predict
the response accurately. Hopefully, the study will lead to a set of
rules or guidelines which may be used to allocate mass to thellumped points
in any lumped parameter analysis of plates.

After the proper allocation of mass to the different areas of the
plate have been determined, obtain a relatiomnship between the number of
lumped masses used in modeling the plate and the resulting error of the
predicted response. This information would be extremely valuable to
persons trying to make the most efficient lumped parameter analysis of
a plate.’

Study the versatility, reliabilitﬂ, and limitations of using a net-
work of beams to approximate the influence coefficients of a variety of
oddly shaped plates.

Study the tendency of the damping ratios for a plate to exhibit a
sinusoidal variation in magnitude as a function of frequency. Part-

icularly, study the behavior of the damping ratios at very low and very

high frequencies.

86




APPENDIX A

DETERMINATION OF THE TRANSFORMATION WHICH
UNCOUPLES THE EQUATIONS OF MOTION

The purpose of this appendix is to determine the conditions under
which a damped dynamic system possess classical normal modes. It is
shown that a necessary and sufficient condition for a damped dynamic
system to possess classical normal modes is that the damping matrix be
diagonalized by the same transformation which uncouples the undamped
system. This transformation is accomplished by the normalized eigenvectors
of the system.

In general, the coupled equations of motion for an N degree of free-
dom linear dynamic system with lumped parameters may be written in matrix

notation as:
[m] {;} + [c].g{é} + [k] {8} = {£(t)} % (A-i) "..

where [m], [c], and [k] are positive definite and symmetric. The homo-

- geneous equation is simply,

[m] {&} + [c] (&} + [k] {8} =0 1 (A-2) ;

The undamped homogeheous equation is determined when [c] and {f(t)} are

equal to zero.
(] (&) + (K] (g} = O CON
Let [6] be the transformation which makes [m] a diagonal matrix when

multiplied in this form [e]T [m] [6]. This transformation necessarily

exists because of the symmetry of [m].
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Define
{8} = 18] {x) ) |
and substitute into Equation A—Z;
[m] T3 {¥} + [c] [8] (%} + [K] [8] {x} = O \ s |

Premultiply Equation A-5 by [8]°.
[e1" [m] (9] (¥} + [91" [e] [07 ()
+ (81" k] [8] {x} = O ' (4-6)

Define

[e]T [m] [g] = [®] a diagonal matrix |

(81" [€] 8] = [€] ///J

(9" [€] 4] = [K] L (a-7)

Since [m], [c], and [k] are positive definite and symmetric matrices,
[m], [c], and [k] will also be positive definite and symmetric. Sub-

stituting the terms defined in Equation A-7 into Equation A-6 one obtains

@Mﬁ+ﬁnﬂfﬁnﬂ=0\ (4-8)
The [m] matrix in Equation A-8 is reduced to the identity matrix by
defining
{p} = [R] {x} ’ 8-9) |
where
[R] - I/El] : (A-10) |.
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and substituting in Equation A-8.:
[R] {8} + [2] [RY™" (8} + (K] (R (e} = O l (A-11)

Premultiply Equation A-11 by [R]_l.

rRy7Y Ry By + [R1T ) Ry ()

+[R)7 (K] [RY p) = O ‘ (a-12) |
Define
(1] =<CR]-1 [R] Identity matrix
(a1 = Ryt a1 [ry? |
(8] = [R1"Y K] [R]! <A—13>\

Substitute Equations A-13 into Equation A-12.

[r] (8} + (A1 (5) + 8] fo} = 0 w14 |

[A] and [B] are positive definite and symmetric matrices and according
. to Hildebrand (38) may be.diagonalized simultaneously by a single trans-
formation if and only if the two matrices [A] and [B] commute. See

Bellman (39). Let [V] be the transformation such that

v1t [a] [v] = ‘[a] is a diagonal matrix \ (A-15) \,
and
[V]T [B] [V] = [b] is a diagonal matrix ‘ (A-ie) .\
Define -
(o} = (V] (] | @17y |

and substitute Equation A-17 into Equation A-1l4,

[v] () + [a] [v] {8} + [8] [V] {a} = 0 (a-18) |
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Premultiply by'[V]T.

vi® (vl (5 + [v1T [a] [v] (&)

+ [v)" [8] [v] {n} = 0 (4-19)1
Substitute Equations A-15 and A-16 into A-19.
[v1" [v] (i) + [a] (4} + [b] {m} =0 | a-20) |

‘Equation{A—ZO represents the damped uncoupled system if and only if
[V]T [V] is a diagonal matrix. If [V] is normalized, this requirement
becomes

[V]T (V=1 (A-21) |

Equation A-21 restricts the transformation described by Equation A-17 to
be. orthogonal.

It is noted that if the above transformations described by Equations
A-4, A-9, and A-17 were applied to the undamped system described by
Equation A-3, the required transformation would be the same as the above
orthogonal transformation. It therefore follows that, if a damped system
possesses classical normal modes, these modes are identical with the normal
modes for the undamped system. The transformation matrix which uncouples
the undamped system is composed of columns which are the eigenvectors of
the system. The eigenvectors of the undamped system are, therefore, the
proper transformation for uncoupling the equations of motion for the

damped system described above.
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APPENDIX B

INTEGRATION OF THE TRANSFER FUNCTION
SQUARED BY THE THEOREM OF RESIDUES

The transfer function (H) squared is defined as

|H(w)|2 = ‘ L . (B-1)
Y [ @f - 0D+ @ )’

where .
= damping ratio \
frequency

]

3
W
1
~ w = natural frequency |
M = mass

The integral (I) of this function from - to +« will be determined

by the theorem of residues. See James (15).

-\ W w (5-2)
@ dw
I = (B—3)
e 1 L@l - oD + @ g )?]

The integrand of Equation B3 which is a function of the real vari-
able i is treated as a function of the complex variable z. The complex

function £ (z) is defined to be

2 [ G, - 2%+ @ g, 2)7]

£(2) ' (B~4)

The complex function described by Equation B-4 has two simple poles
in the upper half complex plane and are determined by solving for the

. zeroes of the expression enclosed by brackets in Equation B-4. These

91

47



poles are found to be. '

= 1_. 2 ! .
z 3 w, + 1§w° l (8-5)

22‘ = 1 -8 w, + ifw,

The integral (I) of Equation B-3 is given by the theorem to be

I = 2mni { The sum of the residues of £(z) in the upper
complex plane}
the upper complex plane are determined by

The residues R1 and R2 in

Ry

-z £ @] _ \\ NG N

Ry = (z=2) |t (@] _ 3-8) |

Equation B-6 can be represented as

I = 2mi (R +R)) ’ (B-9) ‘

Equation B-10 is reduced to

———

_omi o
te2s (o)
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Equation B-11 represents.the integral of the transfer function squared
from -« to +=.

|

® 2 o \
g-oo B 2M2 U.)g § !

For the purpose of practical application the range of integration is
reduced to 0 to ©. Since the integrand of Equation B-12 is an even

function the integral may be represented by

- * 2 S PR S _
thus - (

il

o 2
' H) = —3—37—
S ° 4 M? wf g
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APPENDIX D

SAMPLE CALIBRATION CALCULATION

Calculation of Constant A:

AR_. = R _R_G._R;P__
5 G RG+RP

B _120.8 (50,000)
ARS = 120.8 120.8 + 50,000

AR, = 120.8 = 120.51

5
AR, = .29
AR .29 - .07 .22

vV - T1.051 = .254 _ 797 - 276
AR .27 - .07 _ .22

V = 1.056 - 246 ~ 810 ~ 2710
AR _ .20 - .07 __ _ .22 _ o

A 1.041 - .2335 .807
AR |
A== | average = (.276 + .2715 + .273) /3 = .274
Calculation of Constant B:

R
120.8 (1.98)

.00418

N
B=3F "
Calculation of Constant C:

From mass number one, L = 20 pounds force,

111



112

¢ = 10,000 - 9,876 = 124 x 10°° (in/in)

c=L. 20 _ 1533 x 10°

124 x 10~

From mass number two, L = 20 pounds force,

141 x 107° (in/in)

rt
1

= 10,000 - 9,859

142 x 10°

L 20
C=y¢ = 5

141 x 10~

From mass number three, L = 20 pounds force,

¢ = 5,000 - 4,8565= 144 x 107 (in/in)

C average

AxBxC

(.14 + .142 + .1538) x 106/3 = .144 x 10

.274 x 00418 x .144 x 106 = 165.5

6
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